Skip to content Skip to navigation

 

Merke
  • Bestimme einen Vektor $n$, der auf beide Spannvektoren orthogonal steht, d.h. das folgende Gleichungssystem erfüllt:
  • $$ u_1 \cdot n_1 + u_2 \cdot n_2 + u_3 \cdot n_3 = 0 $$ $$ v_1 \cdot n_1 + v_2 \cdot n_2 + v_3 \cdot n_3 = 0 $$
  • Somit ist die Normalenform gegeben durch: $$ (x-p) \cdot n = 0 $$
  • wobei $p$ der Stützvektor aus der Parameterform ist.

 

 

Beispiel

Sei $ E : \vec{x} = \left(\begin{matrix} 3 \\ 1 \\ 2 \end{matrix}\right) + r \cdot \left(\begin{matrix} 4 \\ 7 \\ 1 \end{matrix}\right) + s \cdot \left(\begin{matrix} 4 \\ -5 \\ 8 \end{matrix}\right) $

Dann:

  • 1. Schritt $$ \begin{align} 4n_1 + 7n_2 + 1n_3 &= 0 \\ 4n_1 - 5n_2 + 8n_3 &= 0 \end{align} $$
  • 2. Schritt $$ \begin{align} 4n_1 + 7n_2 + 1n_3 &= 0 \\ 0n_1 - 12n_2 + 7n_3 &= 0 \end{align} $$
  • 3. Schritt $$ \begin{align} 4n_1 + 7n_2 + 1n_3 &= 0 \\ n_2 &= \frac{7}{12} \end{align} $$
Wä:hle $n_3 = 12$, dann folgt $n_2 = 7$ und $$ 4 \cdot n_1 - 5 \cdot 7 + 8 \cdot 12 = 0 \Leftrightarrow n_1 = -\frac{61}{4} = -15, 25 $$

Somit ist die Normalenform:

$$ \left[\vec{x} - \left(\begin{matrix} 5 \\ 2 \\ 3 \end{matrix} \right) \right] \bullet \left(\begin{matrix} -15.25 \\ 7 \\ 12 \end{matrix} \right) = 0 $$

 

Beliebte Inhalte auf Schulminator