Skip to content Skip to navigation

 

Merke
  • Bei vielen Aufgaben kommt es vor, dass Du zu einer Geraden $ g : \vec x = \vec u + t \vec v $ und einem Punkt $ P $ eine Ebene finden musst, die senkrecht durch die Gerade geht, und den Punkt enthält (z.B. bei der Spiegelung von einem Punkt an einer Geraden, und beim Abstand zwischen Punkt und Gerade).
  • Die Normalenform der Ebene kannst Du aufstellen, indem Du $ \vec v $ als Normalenvektor von $ E $ verwendest und $ \vec p $ als Stützvektor: $$ E : \vec v \bullet (\vec x - \vec p) = 0$$

 

 

Beispiel

Die Ebene durch $P(2|1|5)$ senkrecht zur Geraden $ g: \vec x = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} $ hat die Gleichung:

$$ E: \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \bullet \begin{bmatrix} \vec x - \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} \end{bmatrix} = 0 \Longleftrightarrow x_1 + x_2 - 2x_3 + 7 = 0 $$

 

Beliebte Inhalte auf Schulminator